Package: CAST 1.0.3

CAST: 'caret' Applications for Spatial-Temporal Models
Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial or spatial-temporal modelling tasks using 'caret'. It includes the newly suggested 'Nearest neighbor distance matching' cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models. Methods are described in Meyer et al. (2018) <doi:10.1016/j.envsoft.2017.12.001>; Meyer et al. (2019) <doi:10.1016/j.ecolmodel.2019.108815>; Meyer and Pebesma (2021) <doi:10.1111/2041-210X.13650>; Milà et al. (2022) <doi:10.1111/2041-210X.13851>; Meyer and Pebesma (2022) <doi:10.1038/s41467-022-29838-9>; Linnenbrink et al. (2023) <doi:10.5194/egusphere-2023-1308>; Schumacher et al. (2024) <doi:10.5194/egusphere-2024-2730>. The package is described in detail in Meyer et al. (2024) <doi:10.48550/arXiv.2404.06978>.
Authors:
CAST_1.0.3.tar.gz
CAST_1.0.3.zip(r-4.5)CAST_1.0.3.zip(r-4.4)CAST_1.0.3.zip(r-4.3)
CAST_1.0.3.tgz(r-4.5-any)CAST_1.0.3.tgz(r-4.4-any)CAST_1.0.3.tgz(r-4.3-any)
CAST_1.0.3.tar.gz(r-4.5-noble)CAST_1.0.3.tar.gz(r-4.4-noble)
CAST_1.0.3.tgz(r-4.4-emscripten)CAST_1.0.3.tgz(r-4.3-emscripten)
CAST.pdf |CAST.html✨
CAST/json (API)
NEWS
# Install 'CAST' in R: |
install.packages('CAST', repos = c('https://hannameyer.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hannameyer/cast/issues
Pkgdown site:https://hannameyer.github.io
autocorrelationcaretfeature-selectionmachine-learningoverfittingpredictive-modelingspatialspatio-temporalvariable-selection
Last updated 2 months agofrom:8c9be7f27d. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 29 2025 |
R-4.5-win | OK | Mar 29 2025 |
R-4.5-mac | OK | Mar 29 2025 |
R-4.5-linux | OK | Mar 29 2025 |
R-4.4-win | OK | Mar 29 2025 |
R-4.4-mac | OK | Mar 29 2025 |
R-4.4-linux | OK | Mar 29 2025 |
R-4.3-win | OK | Mar 29 2025 |
R-4.3-mac | OK | Mar 29 2025 |
Exports:aoabssclustered_sampleCreateSpacetimeFoldserrorProfilesffsgeodistglobal_validationknndmnndmnormalize_DIshow.aoashow.ffsshow.knndmshow.nndmshow.trainDItrainDI
Dependencies:caretclassclassIntcliclockcodetoolscolorspacecpp11data.tableDBIdiagramdigestdplyre1071fansifarverFNNforcatsforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrparts2scalessfshapespsparsevctrsSQUAREMstringistringrsurvivalterratibbletidyrtidyselecttimechangetimeDatetwosamplestzdbunitsutf8vctrsviridisLitewithrwkzoo
Area of applicability of spatial prediction models
Rendered fromcast04-AOA-tutorial.Rmd
usingknitr::rmarkdown
on Mar 29 2025.Last update: 2025-01-09
Started: 2024-03-23
Improve computation time of CAST methods
Rendered fromcast05-parallel.Rmd
usingknitr::rmarkdown
on Mar 29 2025.Last update: 2024-03-24
Started: 2024-03-23
Introduction to CAST
Rendered fromcast01-CAST-intro.Rmd
usingknitr::rmarkdown
on Mar 29 2025.Last update: 2025-01-09
Started: 2022-01-27
Nearest neighbor distance matching Cross-validation in CAST
Rendered fromcast03-CV.Rmd
usingknitr::rmarkdown
on Mar 29 2025.Last update: 2024-03-27
Started: 2024-03-27
Visualization of nearest neighbor distance distributions
Rendered fromcast02-plotgeodist.Rmd
usingknitr::rmarkdown
on Mar 29 2025.Last update: 2025-01-09
Started: 2024-03-27